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It is well known that the two-sample Student t test fails to maintain its 
significance level when the variances of treatment groups are unequal, and, 
at the same time, sample sizes are unequal. However, introductory textbooks 
in psychology and education often maintain that the test is robust to variance 
heterogeneity when sample sizes are equal. The present study discloses that, 
for a wide variety of non-normal distributions, especially skewed 
distributions, the Type I error probabilities of both the t test and the 
Wilcoxon-Mann-Whitney test are substantially inflated by heterogeneous 
variances, even when sample sizes are equal. The Type I error rate of the t 
test performed on ranks replacing the scores (rank-transformed data) is 
inflated in the same way and always corresponds closely to that of the 
Wilcoxon-Mann-Whitney test. For many probability densities, the distortion 
of the significance level is far greater after transformation to ranks and, 
contrary to known asymptotic properties, the magnitude of the inflation is an 
increasing function of sample size. Although nonparametric tests of location 
also can be sensitive to differences in the shape of distributions apart from 
location, the Wilcoxon-Mann-Whitney test and rank-transformation tests 
apparently are influenced mainly by skewness that is accompanied by 
specious differences in the means of ranks.  

 
It is well known that widely-used statistical significance tests, 

including the two-sample Student t test and the ANOVA F test, are derived 
under an assumption of homogeneity of variance. Violation of this 
assumption when sample sizes are unequal substantially alters Type I error 
probabilities. When a larger variance is associated with a larger sample size, 
the probability of a Type I error declines below the nominal significance 
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level. In contrast, when a larger variance is associated with a smaller sample 
size, the probability increases, sometimes far above the significance level 
(see, for example, Alexander and Govern, 1994; Byrk and Raudenbush, 
1987; Hsu, 1938; Nelson, 2000; Overall, Atlas, and Gibson, 1995; Scheffe′; 
1959; Schneider and Penfield, 1997; Zimmerman and Zumbo, 1993a, 
1993b; Wludyka and Nelson, 1999). 

 At one time, investigators employed preliminary tests of equality of 
variances before the t test or ANOVA F test (see, for example, Mendes, 
2003). If a preliminary test rejected the hypothesis of equality of variances, 
investigators usually substituted another procedure for t or F tests—often a 
nonparametric test such as the Wilcoxon-Mann-Whitney test or the Kruskal-
Wallis test. More recently it has become apparent that these nonparametric 
methods, also are strongly affected by variance heterogeneity, although the 
changes are not as large as for parametric tests (Zimmerman and Zumbo, 
1993a, 1993b). The power functions of the Wilcoxon-Mann-Whitney and 
the Kruskal-Wallis tests are similar in shape to those of the t and F tests, 
although slightly less in magnitude, and they depend on the ratio of 
variances, as well as the ratio of sample sizes, in the same way. 

It has also been found that it is inefficient to base a decision on 
preliminary tests of equality of variances (Albers, Boon, and Kallenberg, 
2000; Chen and Chen, 1998; Zimmerman, in press), and modern textbooks 
no longer recommend preliminary tests. Substitution of a separate-variances 
approximation of the t test (Satterthwaite, 1946; Welch, 1938), usually leads 
to better results. And in recent years there has been a lot of interest in 
bootstrap, trimming, and related methods (Keselman, Cribbie, & Zumbo; 
Keselman, Wilcox, Othman, and Fradette, 2002; Wei-ming, 1999; Westfall 
and Young, 1993; Wilcox, 2001, 2003). 

 It is still believed by many researchers that both parametric and 
nonparametric significance tests are robust to variance heterogeneity when 
sample sizes are equal. However, investigators have reported changes in the 
Type I error rates of the Student t test even when sample sizes are equal 
(e.g., Harwell, 1990; Rogan and Keselman, 1977). These changes, although 
sometimes substantial, are relatively small compared to the much larger 
changes that occur when sample sizes differ. 

The present study examines a wide variety of non-normal densities. 
For many skewed distributions, heterogeneity of variance produces 
significant distortions of the Type I error rates of the t test even when n1 = 
n2. Furthermore, the distortion is far more serious after transformation of the 
initial scores to ranks, and both the Wilcoxon-Mann-Whitney test and the t 
test on ranks following a rank transformation are adversely affected in the 
same way. 
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METHOD 
 The random number generator used in this study was introduced by 

Marsaglia, Zaman, and Tsang (1990) and has been described by Pashley 
(1993, pp. 395-415). Normal variates, N(0,1), were generated by the 
rejection method of Marsaglia and Bray (1964) and were transformed to 
have various distribution shapes using inverse distribution functions. Many 
of the distributions studied were standard continuous probability densities, 
both skewed and symmetric. 

Some occur frequently in applications. The exponential distribution 
characterizes time and latency measures in psychological research. The 
Gumbel distribution, or extreme value distribution, characterizes the largest 
(or smallest) of a number of values. The lognormal distribution applies to 
random variables that have no values less than zero but a few very large 
values. The Weibull distribution describes failure rates of equipment. 
Mixed-normal distributions are often taken as a model of outliers. In some 
cases, the present study included several distributions from the same family 
of distributions, having different scale and shape parameters, and 
consequently different skewness and kurtosis.  

    Also, the study included various discrete distributions similar to 
the ones studied by Micceri (1989), which occur frequently in educational 
and psychological research. The truncated distributions, for example, 
represent test scores which are concentrated near zero, if a test is too 
difficult, or near an upper “ceiling” if it is too easy. Bimodal and rectangular 
distributions also are common in research. Altogether, 25 distribution 
shapes were included in the study. The algorithms for generating the 
distributions are described in Table A1 in the appendix.   

Each replication of the sampling procedure obtained two independent 
samples of the same size from one of the distributions. The variates were 
transformed to have mean 0 and standard deviation 1. Next, all scores in one 
sample were multiplied by a constant, so that the ratio σ1/σ2 had a 
predetermined value. Sample sizes ranged from 20 to 200 under various 
conditions in the study. The computer code was thoroughly tested, and at 
least 2 million samples were taken from each distribution to verify that the 
sample values had mean 0 and standard deviation 1. 

For all 25 distributions, the means of 2 million sample values did not 
deviate from 0 by more than .002, and the standard deviations did not 
deviate from 1 by more than .006. Also, the means did not deviate from 0 by 
more than .003 and the standard deviations did not deviate from 2 by more 
than .008 for samples from N(0,2). The code was further tested to verify that 
the Type I error probabilities of the t test were close to the nominal 
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significance level for normal distributions with equal variances and that the 
Type I error probabilities of the Wilcoxon-Mann-Whitney test were close to 
the nominal significance level for all 25 distributions when variances were 
equal. The deviations of these probabilities can be observed in Tables 1 and 
2.  

 On each replication, a Student t test was performed on the scores. 
Next, the two samples were combined, the N1 + N2 = 2N1 = 2N2 scores were 
transformed to ranks, and a Student t test was performed on the ranks 
replacing corresponding scores. Finally, the large-sample normal-
approximation form of the Wilcoxon-Mann-Whitney test was performed on 
the ranks. All significance tests were nondirectional and were evaluated at 
the .01, .05, and .10 significance levels. Each condition in the study 
included 50,000 replications of the sampling procedure and subsequent 
significance tests. 

RESULTS OF SIMULATIONS 
 Table 1 presents data for 25 distributions for N1 = N2 = 25.  The data 

for the Student t test for the normal distribution is typical of results obtained 
in many simulation studies in the past. One observes a slight increase in the 
probability of a Type I error above the nominal significance level as σ1/σ2 
becomes increasingly more extreme. On the other hand, the probability of a 
Type I error of the t test performed on ranks replacing the scores increases 
to a somewhat greater extent. When σ1/σ2 = 1, the probability is close to the 
significance level for both scores and ranks, as would be expected. The 
Type I error rate of the Wilcoxon-Mann-Whitney test is close to that of the t 
test on ranks.  

The results for the exponential distribution are quite different, and the 
increase in the Type I error rate is far more extreme. The increase in the case 
of the t test is considerable for the initial scores, and it is overwhelming for 
ranks. Again the Wilcoxon-Mann-Whitney test yields a value close to that 
of the t test on ranks. Moreover, the magnitude of the change apparently is 
an increasing function of sample size in the case of ranks, although this 
magnitude is independent of sample size for scores. The probability of a 
Type I error of the t test on scores is slightly below the nominal significance 
level when σ1 = σ2, and it comes closer to the significance level as sample 
size becomes larger. However, the probability of the test on ranks is close to 
the significance level when σ1 = σ2, for all sample sizes, as one would 
expect. This is true for all distributions in the present study. 
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Table 1. Probability of rejecting H0 by the t test on scores,  the t test on 
ranks and the Wilcoxon-Mann-Whitney test for various non-normal 
distributions (N1 = N2 = 25). 
 

  σ1/σ2 = 1 
 

σ1/σ2 = 2 σ1/σ2 = 3 

 
distribution 

 
α 

 
t 

t on 
ranks 

 
W 

 
t 

t on 
ranks 

 
W 

 
t 

t on 
ranks 

 
W 

 
 
normal 
 
 

 
.01 
.05 
.10 

 
.011 
.051 
.100 

 
.011 
.050 
.099 

 
.009 
.053 
.102 

 
.010 
.052 
.103 

 
.014 
.059 
.113 

 
.012 
.058 
.110 

 
.012 
.054 
.105 

 
.018 
.068 
.127 

 
.015 
.068 
.126 

exponential 
scale 
parameter 1 
 

.01 

.05 

.10 

.008 

.046 

.099 

.011 

.050 

.100 

.009 

.049 

.101 

.018 

.063 

.112 

.095 

.228 

.332 

.083 

.227 

.329 

.025 

.070 

.119 

.145 

.303 

.414 

.132 

.302 

.413 

lognormal 
shape 
parameter 1 
scale 
parameter 1 
 

.01 

.05 

.10 
 

.004 

.039 

.092 

.011 

.048 

.099 

.010 

.050 

.102 

.024 

.074 

.127 

.201 

.391 

.510 

.184 

.393 

.511 

.045 

.100 

.151 

.315 

.522 

.634 

.292 

.523 

.638 

lognormal 
shape 
parameter 1 
scale 
parameter .6 
 

.01 

.05 

.10 
 

.008 

.047 

.098 

.011 

.050 

.100 

.009 

.050 

.098 

.016 

.059 

.110 

.062 

.166 

.255 

.056 

.170 

.264 

.023 

.069 

.120 

.107 

.242 

.345 

.095 

.243 

.346 

mixed-normal 
(.05, 20)  

.01 

.05 

.10 
 

.007 

.045 

.096 

.011 

.050 

.101 

.009 

.050 

.099 

.008 

.044 

.097 

.014 

.056 

.111 

.012 

.057 

.110 

.008 

.048 

.097 

.016 

.067 

.124 

.014 

.068 

.125 

mixed-normal  
(.02, 10) 

.01 

.05 

.10 
 

.004 

.031 

.083 

.010 

.049 

.098 

.010 

.051 

.101 

.005 

.033 

.085 

.014 

.057 

.111 

.012 

.055 

.107 
 

.006 

.037 

.088 

.018 

.069 

.126 

.014 

.066 

.122 

mixed-normal  
(.01, 20) 

.01 

.05 

.10 

.002 

.020 

.062 

.010 

.049 

.099 
 

.009 

.050 

.099 

.003 

.021 

.064 

.013 

.056 

.110 

.011 

.057 

.111 

.003 

.023 

.066 

.016 

.066 

.124 

.016 

.067 

.124 

gamma 
shape 
parameter 2 
 

.01 

.05 

.10 

.009 

.050 

.102 

.011 

.052 

.102 
 

.008 

.050 

.099 

.014 

.057 

.108 

.043 

.131 

.211 

.041 

.136 

.214 

.020 

.065 

.114 

.074 

.184 

.276 

.066 

.185 

.278 

gamma 
shape 
parameter 5 
 

.01 

.05 

.10 

.010 

.050 

.101 

.011 

.050 

.099 
 

.009 

.048 

.096 

.012 

.055 

.105 

.024 

.085 

.150 

.020 

.085 

.149 

.015 

.059 

.108 

.038 

.113 

.187 

.033 

.114 

.187 
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Table 1 (continued). 
 

 
 

 σ1/σ2 = 1 
 

σ1/σ2 = 2 σ1/σ2 = 3 

distribution  
α 

 
t 

t on 
ranks 

 
W 

 
t 

t on 
ranks 

 
W 

 
t 

t on 
ranks 

 
W 

 
Laplace  
location 
parameter 0 
scale 
parameter 1 

 
.01 
.05 
.10 

 

 
.009 
.050 
.101 

 
.011 
.049 
.099 

 
.009 
.049 
.099 

 
.010 
.050 
.102 

 
.013 
.054 
.107 

 
.011 
.054 
.107 

 
.009 
.049 
.100 

 
.015 
.059 
.115 

 
.014 
.064 
.118 

logistic  
location 
parameter 0 
scale 
parameter 1 

.01 

.05 

.10 
 

.010 

.051 

.100 
 

.012 

.051 

.101 

.009 

.049 

.099 

.011 

.053 

.105 

.014 

.058 

.114 

.011 

.057 

.111 

.010 

.052 

.102 

.017 

.066 

.123 

.015 

.067 

.123 

logistic  
location 
parameter 0 
scale 
parameter .5 

.01 

.05 

.10 
 

.009 

.049 

.100 

.011 

.049 

.100 

.009 

.049 

.100 

.011 

.051 

.102 

.014 

.058 

.111 

.011 

.058 

.112 

.011 

.052 

.104 

.016 

.066 

.121 

.014 

.066 

.122 

logistic  
location 
parameter 0 
scale 
parameter 2  

.01 

.05 

.10 
 

.009 

.049 

.101 

.011 

.049 

.099 

.009 

.050 

.098 

.010 

.052 

.102 

.014 

.058 

.109 

.011 

.056 

.108 

.010 

.051 

.104 

.016 

.065 

.124 

.015 

.067 

.124 

Gumbel  
location 
parameter 0 
scale 
parameter 1 

.01 

.05 

.10 
 

.009 

.049 

.099 

.011 

.049 

.099 

.009 

.048 

.099 

.012 

.055 

.107 

.027 

.092 

.162 

.024 

.091 

.161 

.016 

.059 

.109 

.045 

.126 

.206 

.040 

.129 

.207 

power function 
shape 
parameter .5 
scale 
parameter 1 

.01 

.05 

.10 
 

.010 

.049 

.099 

.011 

.048 

.099 

.009 

.050 

.099 

.014 

.054 

.104 

.050 

.140 

.221 

.045 

.140 

.221 

.016 

.059 

.109 

.068 

.169 

.255 

.058 

.165 

.252 

power function 
shape 
parameter 3 
scale 
parameter 1 

.01 

.05 

.10 

.010 

.050 

.100 

.011 

.051 

.099 

.009 

.051 

.102 

.014 

.056 

.106 

.041 

.123 

.199 

.036 

.121 

.197 

.017 

.059 

.108 

.061 

.157 

.242 

.053 

.156 

.243 

bimodal 
1σ  between 
modes 

.01 

.05 

.10 

.010 

.051 

.100 

.011 

.050 

.099 

.009 

.048 

.099 

.011 

.052 

.103 

.013 

.059 

.112 

.012 

.058 

.112 

.011 

.053 

.106 

.017 

.068 

.127 

.015 

.067 

.124 
bimodal 
2 σ  between 
modes 

.01 

.05 

.10 

.010 

.050 

.100 

.011 

.048 

.098 

.009 

.050 

.099 

.011 

.052 

.102 

.015 

.060 

.113 

.012 

.059 

.115 

.012 

.055 

.106 

.019 

.072 

.130 

.016 

.072 

.129 
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Table 1 (continued). 
 
  σ1/σ2 = 1 

 
σ1/σ2 = 2 σ1/σ2 = 3 

distribution  
α 

 
t 

t on 
ranks 

 
W 

 
t 

t on 
ranks 

 
W 

 
t 

t on 
ranks 

 
W 

 
Weibull 
shape 
parameter .5 
scale 
parameter 1 
 

 
.01 
.05 
.10 

 

 
.003 
.035 
.090 

 
.010 
.049 
.099 

 
.009 
.050 
.098 

 
.035 
.094 
.146 

 
.515 
.722 
.812 

 
.494 
.723 
.811 

 
.067 
.126 
.176 

 
.624 
.803 
.875 

 
.609 
.808 
.876 

Weibull  
shape 
parameter 3 
scale 
parameter 1 
 

.01 

.05 

.10 
 

.011 

.049 

.099 

.011 

.050 

.097 

.010 

.049 

.099 

.011 

.051 

.100 

.014 

.059 

.114 

.013 

.059 

.114 

.012 

.054 

.106 

.019 

.072 

.131 

.016 

.070 

.130 

Weibull 
shape 
parameter 2 
scale 
parameter 1 
 

.01 

.05 

.10 
 

.010 

.049 

.101 

.011 

.049 

.100 

.009 

.048 

.098 

.012 

.053 

.103 

.019 

.075 

.136 

.018 

.074 

.133 

.013 

.055 

.104 

.028 

.093 

.159 

.025 

.093 

.161 

 
ceiling at µ + 
1.5 σ 

.01 

.05 

.10 
 

.010 

.049 

.099 

.011 

.048 

.100 

.008 

.048 

.097 

.012 

.053 

.104 

.015 

.061 

.116 

.013 

.059 

.115 

.013 

.055 

.106 

.019 

.070 

.131 

.016 

.068 

.126 

 
ceiling at µ + 
.5 σ 

.01 

.05 

.10 
 

.010 

.050 

.100 

.011 

.049 

.098 

.009 

.048 

.097 

.014 

.056 

.106 

.057 

.154 

.241 

.051 

.155 

.241 

.017 

.060 

.110 

.070 

.173 

.262 

.062 

.172 

.260 
 

triangular 
range (0, 2) 
 
 

.01 

.05 

.10 

.012 

.051 

.101 

.011 

.051 

.100 

.010 

.051 

.100 

.011 

.052 

.102 

.014 

.059 

.113 

.011 

.057 

.112 

.013 

.054 

.103 

.018 

.068 

.125 

.016 

.070 

.126 

rectangular 
range (0,1) 
 

.01 

.05 

.10 

.010 

.049 

.100 

.010 

.049 

.099 
 

.009 

.049 

.099 

.012 

.053 

.105 

.017 

.064 

.121 

.014 

.064 

.119 

.013 

.055 

.102 

.021 

.075 

.134 

.018 

.075 

.134 
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The same pattern of results found for the exponential distribution 
characterizes many other continuous distributions, as well as several 
discrete distributions included in the study. For these continuous 
densitiesthe power function, three versions of the Weibull, two versions 
of the lognormal, and the gamma the inflation of Type I error rates is as 
pronounced, or more so, as that of the exponential distribution. The same is 
true for the geometric distribution, the discrete analogue of the exponential 
distribution. The common feature of all these distributions is skewness. In 
all these cases, the inflation of the probability of the t test on ranks (and the 
Wilcoxon-Mann-Whitney test) exceeds that of the t test on scores. 

For many other distributions, some increase occurs, but it is not as 
extreme as the ones listed above. For example, the logistic distribution 
exhibits changes characteristic of the normal distribution, for both scores 
and ranks. The same thing is true for several discrete distributions. The 
common feature of these distributions is symmetry. For every distribution in 
this table, the Type I error rate of the Wilcoxon-Mann-Whitney test is 
inflated in the same way when variances are unequal and always remains 
extremely close to that of the t test performed on ranks. 

 Figures 1 through 6 plot more detailed results for selected 
distributionsthe lognormal, rectangular, power function, gamma, logistic, 
and Weibullfor σ1/σ2 ranging from 1 to 3 in increments of .25, for the .05 
significance level, and for sample sizes of 20 and 50. In all cases, the pattern 
of results is similar to that described above. In Figure 1, for the lognormal 
distribution, the curves for the Wilcoxon-Mann-Whitney test and the rank-
transformation test are almost indistinguishable. Since the same is true for 
all distributions, curves for the Wilcoxon-Mann-Whitney test were omitted 
in Figures 2 through 6. The size of the change for ranks exceeds that for 
scores in all cases. The increase for ranks is extreme for the lognormal, 
power function, gamma, and Weibull distributions, while it is more 
moderate for the rectangular and logistic distributions. There appears to be a 
slight or moderate increase for scores in all cases except the power function 
distribution for N = 50. 

 Figure 7 plots the probability of rejecting H0 as a function of sample 
size for the exponential distribution, when σ1/σ2 is fixed at 1.25 or 2.00. 
Clearly, the extent to which the Type I error rate of the test on ranks exceeds 
the nominal significance level is an increasing function of sample size, 
while this is not true for the test on scores.  
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Figure 1. Probability of rejecting H0 by Student t test on scores, the 
rank-transformation test (t test on ranks), and the Wilcoxon-Mann-
Whitney test, as a function of ratio of standard deviations lognormal 
distribution (shape parameter 1, scale parameter 1). 
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Logistic Distribution

N1  =  N2  = 20

σσσσ1 / σ σ σ σ2

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00

Pr
ob

ab
ili

ty
 o

f R
ej

ec
tin

g 
H

0

0.040

0.045

0.050

0.055

0.060

0.065

0.070

0.075

Scores
Ranks

N1  =  N2  =  50

σσσσ1    / σ σ σ σ2        

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00

Pr
ob

ab
ili

ty
 o

f R
ej

ec
tin

g 
H

0

0.040

0.045

0.050

0.055

0.060

0.065

0.070

0.075

Scores
Ranks

 
 
Figure 2. Probability of rejecting H0 by Student t test on scores and 
ranks as a function of ratio of standard deviationslogistic 
distribution (location parameter 0, scale parameter 1). 
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Gamma Distribution
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Figure 3. Probability of rejecting H0 by Student t test on scores and 
ranks as a function of ratio of standard deviationsgamma 
distribution (2 convolutions). 
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Figure 4. Probability of rejecting H0 by Student t test on scores and 
ranks as a function of ratio of standard deviationspower distribution 
(shape parameter .5, scale parameter 1). 
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Weibull Distribution
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Figure 5. Probability of rejecting H0 by Student t test on scores and 
ranks as a function of ratio of standard deviationsWeibull 
distribution (shape parameter .5, scale parameter 1). 
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Rectangular Distribution
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Figure 6. Probability of rejecting H0 by Student t test on scores and 
ranks as a function of ratio of standard deviations rectangular 
distribution on (0,1). 
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Exponential Distribution
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Figure 7. Probability of rejecting H0 by Student t test on scores and 
ranks as a function of sample size (N1 = N2)exponential distribution 
(scale parameter 1). 
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Table 2 provides a more complete picture of the dependence of the 
Type I error rate on sample size. All 25 distributions are included in the 
table, which gives probabilities for sample sizes of 20, 50, and 80 and for 
ratios of standard deviations of 1.25 and 2.00. The test on ranks exhibits the 
same dependence on sample size shown in Figure 7 for many other non-
normal distributions, both continuous and discrete. These include the 
lognormal (both versions), gamma (both versions), Gumbel, power function 
(both versions), Weibull (two of the three versions), and ceiling at µ + 1.5σ. 
In all these cases, the inflation of the Type I error probability is greater when 
σ1/σ2 is larger (2.00 rather than 1.25). Furthermore, it increases more 
rapidly. All these distributions are skewed. Samples from symmetric 
distributions, such as the mixed-normal, logistic, bimodal, triangular, 
rectangular, and Laplace, apparently are not affected in this way. 

 Further evidence that skewness accounts for inflation of the t 
statistic is provided by Figures 8 and 9, which are plots of relative frequency 
distributions of the differences between means. These are based on 50,000 
samples, for sample sizes of N1 = N2 = 20, for a ratio of standard deviations 
of 3.00, and for a significance level of .05. In the case of the symmetric 
logistic distribution shown in Figure 8, the differences between means are 
symmetric about zero, as is expected, and the values of the t statistic also are 
symmetric about zero. The Type I error rate is .055. However, in the case of 
the skewed lognormal distribution shown in Figure 9, the distribution of 
differences between means is negatively skewed, and the values of the t 
statistic are substantially inflated. In this case the Type I error rate is .106. 

 Figure 10 shows similar results for the rank transformation applied 
to samples from a lognormal distribution. The initial scores were 
transformed to ranks and the t test was performed on the ranks. The sample 
sizes, ratio of standard deviations, and significance level were the same as in 
Figure 9. The differences between means of ranks is nearly symmetric about 
7 instead of zero, and the t distribution is highly skewed with a mean of 
about 2 instead of zero. In this case the Type I error rate of the t test on 
ranks is .444. The distributions of differences between means and of values 
of the t statistic in Figures 8, 9, and 10 are consistent with the inflated Type 
I error rates in Tables 1 and 2. 
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Table 2. Probability of rejecting H0 by the t test on scores, t test on 
ranks, and Wilcoxon-Mann-Whitney test as a function of sample size 
(N1 = N2 = 20, 50, and 80) for two ratios of standard deviations (σσσσ1/σσσσ2 = 
1.25 and 2.00), αααα = .05. 
 

 
 

   
t 
 

  
t on ranks 

 

  
W 

 

   N1,N2   N1,N2   N1,N2 

 

 

distribution σ1/σ2 20 50 80 20 50 80 20 50 80 
 
normal 
 

 
1.25 
2.00 

 

 
.050 
.054 

 
.050 
.050 

 
.049 
.053 

 
.050 
.058 

 
.051 
.059 

 
.051 
.059 

 
.050 
.057 

 
.050 
.057 

 
.050 
.058 

exponential 
scale parameter 1 
 

1.25 
2.00 

 

.047 

.063 
.050 
.056 

.049 

.053 
.077 
.191 

.125 

.394 
.171 
.557 

.079 

.189 
.123 
.391 

.170 

.553 

lognormal 
shape parameter 1 
scale parameter 1 
 

1.25 
2.00 

 

.044 

.077 
.045 
.065 

.048 

.062 
.105 
.325 

.198 

.654 
.284 
.840 

.105 

.326 
.196 
.652 

.280 

.840 

lognormal 
shape parameter 1 
scale parameter .6 
 

1.25 
2.00 

.050 

.063 
.050 
.056 

.050 

.052 
.064 
.145 

.087 

.281 
.106 
.408 

.063 

.145 
.085 
.281 

.108 

.408 

mixed-normal 
(.05, 20)  

1.25 
2.00 

 

.044 

.045 
 

.046 

.047 
.047 
.047 

.049 

.057 
.050 
.059 

.052 

.058 
.050 
.058 

.052 

.060 
.050 
.059 

mixed-normal  
(.02, 10) 

1.25 
2.00 

 

.033 

.033 
.038 
.037 

.041 

.039 
.052 
.056 

.052 

.058 
.050 
.057 

.051 

.056 
.050 
.057 

.051 

.059 

mixed-normal  
(.01, 20) 

1.25 
2.00 

 

.021 

.023 
.026 
.025 

.035 

.031 
.049 
.057 

.051 

.058 
.050 
.058 

.051 

.054 
.051 
.057 

.051 

.056 

gamma 
shape parameter 2 
 

1.25 
2.00 

 

.051 

.059 
.050 
.054 

.049 

.053 
.060 
.117 

.076 

.210 
.089 
.298 

.060 

.114 
.076 
.208 

.092 

.297 

gamma 
shape parameter 5 

1.25 
2.00 

 

.051 

.055 
 

.050 

.052 
.051 
.050 

.053 

.078 
.060 
.112 

.064 

.146 
.052 
.079 

.058 

.113 
.062 
.147 
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Table 2 (continued). 
 

    
t 
 

  
t on ranks 

 

  
W 

 

   N1,N2   N1,N2   N1,N2 
 

 

distribution σ1/σ2 20 50 80 20 50 80 20 50 80 
 
Laplace  
location 
parameter 0 
scale parameter 1 

 
1.25 
2.00 

 

 
.049 
.050 

 
.049 
.051 

 
.051 
.050 

 
.051 
.056 

 
.051 
.057 

 
.052 
.054 

 
.050 
.055 

 
.049 
.055 

 
.049 
.058 

logistic  
location 
parameter 0 
scale parameter 1 

1.25 
2.00 

 

.050 

.052 
.050 
.049 

.049 

.051 
.050 
.057 

.052 

.058 
.051 
.059 

.049 

.055 
 

.051 

.057 
.050 
.058 

logistic  
location 
parameter 0 
scale parameter 
.5 

1.25 
2.00 

 

.050 

.050 
 

.050 

.051 
 

.050 

.050 
 

.051 

.055 
 

.051 

.058 
 

.051 

.057 
 

.049 

.057 
.049 
.057 

.048 

.058 

logistic  
location 
parameter 0 
scale parameter 2  

1.25 
2.00 

 

.049 

.051 
.050 
.050 

.049 

.048 
.049 
.057 

.051 

.059 
.051 
.056 

.049 

.056 
.049 
.058 

.051 

.056 

Gumbel  
location 
parameter 0 
scale parameter 1 

1.25 
2.00 

 

.050 

.056 
.049 
.053 

.050 

.052 
.054 
.085 

.061 

.130 
.066 
.174 

.051 

.083 
.050 
.128 

.054 

.174 

power function 
shape parameter 
.5 
scale parameter 1 

1.25 
2.00 

 

.053 

.053 
.051 
.052 

.050 

.050 
.076 
.123 

.111 

.214 
.137 
.299 

.075 

.120 
.107 
.216 

.138 

.297 

power function 
shape parameter 
3 
scale parameter 1 

1.25 
2.00 

.051 

.055 
.051 
.052 

.051 

.051 
.061 
.109 

.078 

.184 
.095 
.255 

.060 

.107 
.076 
.182 

.092 

.254 

bimodal 
1σ  between 
modes 

1.25 
2.00 

 

.050 

.050 
.049 
.050 

.050 

.052 
.049 
.058 

.051 

.059 
.052 
.060 

.049 

.056 
.052 
.059 

.050 

.059 

bimodal 
2 σ  between 
modes 

1.25 
2.00 

 

.052 

.052 
.051 
.053 

.049 

.051 
.051 
.058 

.052 

.061 
.051 
.060 

.049 

.058 
.051 
.059 

.050 

.060 
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Table 2 (continued). 
 

    
t 
 

  
t on ranks 

 

  
W 

 

   N1,N2   N1,N2   N1,N2 
 

 

distribution σ1/σ2 20 50 80 20 50 80 20 50 80 

 
Weibull 
shape parameter .5 
scale parameter 1 
 

 
1.25 
2.00 

 
.043 
.097 

 
.045 
.076 

 

 
.045 
.069 

 

 
.321 
.630 

 
.651 
.946 

 

 
.836 
.994 

 

 
.319 
.628 

 
.647 
.945 

 
.835 
.994 

Weibull  
shape parameter 3 
scale parameter 1 
 

1.25 
2.00 

 

.050 

.054 
.052 
.052 

.050 

.049 
.049 
.060 

.052 

.062 
.053 
.061 

.050 

.060 
.052 
.060 

.051 

.061 

Weibull 
shape parameter 2 
scale parameter 1 
 

1.25 
2.00 

 

.049 

.053 
.049 
.051 

.049 

.052 
.051 
.070 

.055 

.091 
.059 
.112 

.052 

.069 
.054 
.091 

.057 

.108 

ceiling at µ + 1.5σ 1.25 
2.00 

 

.051 

.052 
.051 
.052 

.050 

.050 
.050 
.059 

.053 

.062 
.053 
.063 

.050 

.059 
.052 
.062 

.053 

.062 

ceiling at µ + .5 σ 1.25 
2.00 

 

.050 

.056 
.050 
.052 

.052 

.050 
.100 
.135 

.179 

.243 
.257 
.348 

 

.104 

.135 
.180 
.245 

.256 

.344 

triangular 
range (0, 2) 
 

1.25 
2.00 

 

.052 

.054 
.049 
.050 

.051 

.052 
.051 
.060 

.051 

.060 
.051 
.060 

.050 

.060 
.050 
.057 

.051 

.056 

rectangular 
range (0,1) 
 

1.25 
2.00 

.052 

.054 
.050 
.051 

.050 

.052 
.052 
.063 

.052 

.064 
.052 
.066 

.051 

.063 
.052 
.064 

.052 

.065 
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Logistic Distribution       N1 = N2 = 20       σσσσ1111 / σσσσ2 = 3
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Figure 8. Relative frequency distributions of differences between means 
and values of t statistic logistic distribution 
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Lognormal Distribution       N1 = N2 = 20       σσσσ1111 / σσσσ2222  = 3
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Figure 9. Relative frequency distributions of differences between means 
and values of t statistic lognormal distribution 
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Lognormal Distribution       N1 = N2 = 20       σσσσ1 / σσσσ2 = 3
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Figure 10. Relative frequency distributions of differences between 
means of ranks and values of t statistic on rankslognormal 
distribution 
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FURTHER IMPLICATIONS 
 It is generally believed that significance tests, both parametric and 

nonparametric, are robust to heterogeneity of variance when the population 
distribution is normal and sample sizes are equal. One observes some 
elevation of the Type I error probability of the Student t test under these 
conditions. The same conditions produce somewhat larger elevations of the 
Type I error rates of the t test on ranks and the Wilcoxon-Mann-Whitney 
test. For the normal case, the t test on scores can be regarded as robust to 
variance heterogeneity with some justification. However, the t test on ranks, 
as well as the Wilcoxon-Mann-Whitney test, can be seriously misleading if 
the ratio σ1/σ2 is 1.5 or more and sample sizes are as large as 50. 

 In the case of non-normal distributions, especially skewed 
distributions, the picture is quite different. The disruption of the t test on 
scores still is noticeable but in most cases not extreme. In contrast, the 
disruption of the t test on ranks is far greater. In the case of a few skewed 
distributions, such as the lognormal, exponential, and Weibull, both scores 
and ranks are severely affected, but ranks considerably more than scores. 
The pattern of results for symmetric non-normal distributions, including the 
rectangular, triangular, and bimodal, appears to be quite similar to that of 
the normal distribution. However, for most of the skewed non-normal 
densities, the Type I error rate is elevated far above the nominal significance 
level. Another anomalous result appears in the present study: The degree of 
inflation of the t test under the rank transformation increases with sample 
size for both normal and many non-normal distributions. 

Since the Wilcoxon-Mann-Whitney test is known to be sensitive to 
any difference in distributions, not just to a difference in means, it is 
tempting to view the increase in Type I error rates in the present study as 
rejection of a false null hypothesis having to do with shape rather than 
location. However, this interpretation requires caution. For one thing, many 
distributions, can be quite dissimilar in shape, including differences in 
variances, and still no increase in Type I error rates are observed unless 
sample sizes are unequal. When both distributions are non-normal and 
symmetric, the change resulting from variance heterogeneity is minimal; 
when both distributions are non-normal and skewed, the change is 
extensive.  

Furthermore, the equivalence of the Wilcoxon-Mann-Whitney test and 
the Student t test under a rank transformation raises another issue. For many 
distributions, the t test applied to raw scores is not highly sensitive to 
differences in shape apart from differences in location. However, 
transformation of raw scores to ranks immediately renders the t test 
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sensitive to differences in variances, extremely so when sample sizes are 
unequal. It is difficult to view this outcome as a consequence of the 
assumptions underlying the Wilcoxon-Mann-Whitney test, even though the 
Type I error rates of the two tests are nearly identical. 

 The results of the present study are strikingly different in other ways 
from the well-established effects of heterogeneous variances on Type I and 
Type II errors for normal distributions and unequal sample sizes. In the 
usual case, the modification of probabilities is large, but the change is 
greater for the parametric t test than for the nonparametric Wilcoxon-Mann-
Whitney test. In the present study, where sample sizes are equal, the 
outcome is the reverse. In both cases, the degree of change is an increasing 
function of the ratio σ1/σ2. 

 The present study also reveals that the inflation of the Type I error 
rate can be different for two distributions from the same family of 
distributions. For example, consider the Type I error rates of the Weibull 
distribution with shape parameter 3 and scale parameter 1, compared to the 
Weibull distribution with shape parameter .5 and scale parameter 1. Note 
also the difference between the distribution with a ceiling at µ + 1.5σ and 
the distribution with a ceiling at µ + .5σ. Similar differences are evident for 
the two lognormal distributions. Again, these differences appear to be 
related to varying degrees of skewness. 

 The theoretical t distribution is symmetric about zero and approaches 
the standard normal distribution as degrees of freedom increases. 
Furthermore, it is known that the distribution of sample values of t obtained 
from distributions with the same variance are symmetric about zero (see, for 
example, Cressie and Whitford, 1986; Miller, 1986; Tan, 1982; Wilcox, 
2003). The present data suggest this is also at least approximately true for 
samples from symmetric distributions with different variances. However, 
the distribution of sample values of t from skewed distributions with 
unequal variances is not necessarily symmetric about zero, as indicated by 
Figure 9. Otherwise expressed, for these cases, the statistic calculated by the 
usual Student t formula does not have a theoretical t distribution. As a 
consequence, Type I error rates are modified, as indicated by the results in 
Tables 1 and 2. Moreover, when scores are transformed to ranks before the t 
test, a procedure equivalent to the Wilcoxon-Mann-Whitney test, alteration 
of the sample t distribution is more extreme, as shown by Figure 10. 

 In some instances, the increase in Type I error rates appears to be 
quite large for relatively small values of σ1/σ2, especially when sample sizes 
are large. This fact has significant practical implications. As an example, 
suppose a two-sample t test is performed on test scores with a truncated 
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normal distribution with a ceiling at µ + .5σ. Also, suppose that the sample 
sizes are 100 or more and that σ1/σ2 = 1.1, a ratio that many researchers 
would consider inconsequential. Or, imagine the same sample sizes and 
ratio of standard deviations characterizing response times having an 
exponential distribution.  

Table 3 provides an indication of what can happen with these 
combinations of slight, almost insignificant variance heterogeneity and 
relatively large sample sizes with the above distributions and also with 
Weibull distribution. Although many researchers would consider the ratio 
σ1/σ2 = 1.1 to be no cause for concern, it is obvious from the table that the 
inflation of Type I error rates is sizeable for all the above distributions. Even 
a smaller ratio, σ1/σ2 = 1.05, produces considerable inflation. 

It should be emphasized again that σ1/σ2 is a ratio of population 
standard deviations. It is quite possible for s1/s2 , the ratio of sample 
standard deviations, to be close to 1.0, although σ1/σ2 is 1.1, 1.2, or larger, 
because of sampling variability. For this reason, a researcher inspecting 
sample data may not detect inequality of variances when it exists, and, if 
sample sizes are sufficiently large, a Wilcoxon-Mann-Whitney test or rank-
transformation test may lead to an incorrect statistical decision with high 
probability. As long as there is uncertainty about characteristics of the 
population distribution in a research study, together with doubt about 
possible heterogeneity of variance, a rank-based test entails risk, and the risk 
increases as sample size increases. 

SOME PRACTICAL RECOMMENDATIONS 
 The practice of using t tests and ANOVA F tests when variances are 

unequal cannot be justified by claims that the tests are “robust,” not even if 
sample sizes are equal. Type I error rates are altered by heterogeneous 
variances when sample sizes are unequal, and the same is true when sample 
sizes are equal, if the population distribution is skewed. Moreover, the 
nonparametric counterparts of these significance tests have the same 
limitations and often lead to worse results. It is well established that 
nonparametric methods based on ranks can protect against non-normality, 
but they are not a solution to variance heterogeneity.  

 
 

 



 D.W. Zimmerman 128 

Table 3. Probability of rejecting H0 for slight variance heterogeneity 
(σσσσ1/σσσσ2 = 1.05 and 1.10) combined  with large sample sizes (100 and 
200)distribution with ceiling at µµµµ +.5σσσσ , exponential  distribution, and 
Weibull distribution.  
 
   t 

 
t on ranks W 

   N1, N2 N1, N2 N1, N2 
distribution σ1/σ2 α 100 200 100 200 100 200 
 
 
 
 
ceiling at µ +.5 σ 
 
 

 
 

1.05 
 
 
 

1.10 

 
.01 
.05 
.10 

 
.01 
.05 
.10 

 

 
.010 
.050 
.100 

 
.010 
.049 
.098 

 

 
.010 
.049 
.100 

 
.010 
.050 
.100 

 
.093 
.239 
.347 

 
.103 
.256 
.367 

 
.207 
.420 
.540 

 
.232 
.447 
.570 

 
.090 
.236 
.345 

 
.101 
.256 
.368 

 
.201 
.410 
.534 

 
.227 
.444 
.568 

 
 
 
 
exponential 
 
 
 

 
 

1.05 
 
 
 

1.10 

 
.01 
.05 
.10 

 
.01 
.05 
.10 

 
.010 
.049 
.100 

 
.010 
.049 
.100 

 

 
.010 
.051 
.102 

 
.009 
.050 
.099 

 

 
.013 
.059 
.114 

 
.021 
.082 
.148 

 

 
.016 
.068 
.127 

 
.034 
.116 
.194 

 

 
.014 
.062 
.117 

 
.021 
.083 
.149 

 
.016 
.069 
.128 

 
.035 
.120 
.198 

 
 
 
 
Weibull 
 
 
 
 

 
 

1.05 
 
 
 

1.10 
 
 

 
.01 
.05 
.10 

 
.01 
.05 
.10 

 
.007 
.045 
.100 

 
.006 
.045 
.099 

 
.007 
.047 
.100 

 
.008 
.046 
.098 

 
.120 
.288 
.403 

 
.323 
.553 
.672 

 
.268 
.501 
.624 

 
.656 
.841 
.906 

 
.116 
.286 
.401 

 
.316 
.553 
.671 

 
.270 
.503 
.625 

 
.648 
.836 
.900 

 
 
In the case of normal distributions and some non-normal distributions, 

substitution of a separate-variances significance test, such as the Welch 
(1938) or Satterthwaite (1946) versions of the t test, often has favorable 
results. However, a decision to substitute an alternative test cannot 
reasonably be made on the basis of a preliminary test of equality of 
variances. If a separate-variance test is to be used, it is more efficient to 
perform it unconditionally whenever sample sizes are unequal. 

Of course, it is prudent to make certain that sample sizes are equal in 
research designs whenever possible. However, this course of action does not 
unfailingly protect the significance level when the population distribution is 
not known. One cannot confidently infer population parameters like 
variance and skewness from sample data alone, especially if samples are 



Inflation of type I error rates 129 

small. If one is using a well-established measurement technique to obtain 
large samples from a known distribution, uncertainly about parameters may 
be minimal. In other cases, like those identified in the present study, 
researchers should recognize that familiar, widely used statistical methods 
may not be suitable. Alternative procedures with improved properties have 
been described by Keselman, Cribbie, and Zumbo (1997), Keselman, 
Wilcox, Othman, and Fradette (2001), Wei-ming (1999), and Wilcox (2001, 
2003). These computer-intensive bootstrap, trimming, and related methods 
are promising, but still unfamiliar to many researchers and not yet routinely 
included in textbooks and statistical software packages.  
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APPENDIX 

Generation of Variates with Specified Continuous and Discrete 
Distributions. 

Let U be a unit rectangular variate and Y a unit normal variate. The 
various continuous and discrete distributions in the study were obtained by 
the transformations in Table A1. After these transformations, X was 
normalized by subtracting the mean and dividing by the standard deviation, 
so that all variates had µ = 0 and σ = 1. For further discussion of generation 
of variates,  see Evans, Hastings, & Peacock (1993) and Patel, Kapadia, & 
Owen (1976). 

 
Table A1.  
 

Distribution               Transformation 

exponential 
λ = 1 
 

X = − log(U) 

lognormal 
shape parameter 1 
scale parameter 1 
 

 
X = exp(Y) 

lognormal  
shape parameter l 
scale parameter .6 
 

 
X = exp(.6Y) 

 
mixed-normal (.05, 20) 
  

 
X is N(0,1) with probability .95 
and N(0, 20) with probability .05. 
 

 
mixed-normal (.02, 10) 
 

 
X is N(0,1) with probability .98 
and N(0,10) with probability .02. 
 

 
mixed-normal (.01, 20)  
 

 
X is N(0,1) with probability .99 
and N(0,20) with probability .01. 
 

gamma 
shape parameter 2 
 

2

1
log( )i

i
X U

=
= −∑  

gamma 
shape parameter 5 
 

5

1
log( )i

i
X U

=
= −∑  
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Table A1 (continued). 
 
 
 

Distribution             Transformation 

Laplace (double-exponential) 
location parameter 0 
scale parameter 1 
 

 
X = log(U1/U2), where U1 and U2 are 
unit rectangular. 

logistic  
location parameter 0 
scale parameter 1 
 

 
X = log[U/(1 − U)] 

logistic  
location parameter 0 
scale parameter .5 
 

 
X = .5 log[U/(1 − U)] 

logistic  
location parameter 0 
scale parameter 2  
 

 
X = 2 log[U/(1 − U)] 

Gumbel (extreme value) 
location parameter 0 
scale parameter 1 
 

 
X = −log(−log U) 

power function 
shape parameter .5 
scale parameter 1 
 

 
X = U2 

power function 
shape parameter 3 
scale parameter 1 
 

 
X = U1/3 

bimodal, 
1 σ between modes 
 

N(0,1) with probability .5 and N(1,1) 
with probability .5 

bimodal, 
2 σ  between modes 
 

N(0,1) with probability .5 and N(2,1) 
with probability .5 
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Table A1 (continued). 
 
 

Distribution               Transformation 

Weibull 
shape parameter .5 
scale parameter 1  
 

 
X = [−log(U)]2 

Weibull  
shape parameter 3 
scale parameter 1 
 

 
X = [−log(U)]1/3 

Weibull 
shape parameter 2 
scale parameter 1 
 

 
X = [−log(U)]1/2 
 
 

ceiling at µ + 1.5 σ X = N(0,1), scores exceeding µ + 1.5σ 
replaced by µ + 1.5σ. 
 

ceiling at µ + .5 σ X = N(0,1) scores exceeding  µ + .5σ 
replaced by µ + .5σ. 
 

triangular, 
range (0,2) 
 

X = (U1 + U2)/2 
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